A construction of C∗-algebras from C∗-correspondences
نویسندگان
چکیده
We introduce a method to define C-algebras from C-correspondences. Our construction generalizes Cuntz-Pimsner algebras, crossed products by Hilbert C-modules, and graph algebras.
منابع مشابه
2 00 3 Ideal Structure of C ∗ - Algebras Associated with C ∗ - Correspondences
We study the ideal structure of C∗-algebras arising from C∗-correspondences. We prove that gauge-invariant ideals of our C∗-algebras are parameterized by certain pairs of ideals of original C∗-algebras. We show that our C∗-algebras have a nice property which should be possessed by generalization of crossed products. Applications to crossed products by Hilbert C∗-bimodules and relative Cuntz-Pim...
متن کاملIdeal Structure of C * -algebras Associated with C * -correspondences
We study the ideal structure of C∗-algebras arising from C∗-correspondences. We prove that gauge-invariant ideals of our C∗-algebras are parameterized by certain pairs of ideals of original C∗-algebras. We show that our C∗-algebras have a nice property which should be possessed by generalization of crossed products. Applications to crossed products by Hilbert C∗-bimodules and relative Cuntz-Pim...
متن کاملSome Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras
In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...
متن کاملFixed point approach to the Hyers-Ulam-Rassias approximation of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras
In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for the following $m$-variable additive functional equation: $$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...
متن کاملA Note on Spectrum Preserving Additive Maps on C*-Algebras
Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003